
1

CLUSTERED COMPUTING WITH NETLOGO AND REPAST J:
BEYOND CHEWING GUM AND DUCT TAPE

M.T.K. KOEHLER* and B.F. TIVNAN, The MITRE Corporation, McLean, VA

S. UPTON, Referentia Systems, Inc., Tampa, FL

ABSTRACT

We have developed a methodology to run NetLogo in an automated fashion in a cluster
computing environment or on a single machine, varying both parameter values and/or
random seeds. We utilize the Java application program interface (API) of NetLogo, as
well as those of Condor, and three custom software programs: a NetLogo XML parser,
XStudy, and OldMcData (OMD). This paper describes how to set up a NetLogo program
to run in this environment, use the XML parser and XStudy to create the other necessary
files, and then use OMD to perform the runs and collect the output data files. The
software currently supports automation of statistical experimental designs (such as a
nearly orthogonal Latin hypercube), evolutionary algorithms (utilizing a user-defined,
potentially very complex fitness function), and full factorial parameter sweeps. All of the
software discussed in the paper will be made available to the research community. The
current system represents a fully functional prototype, although additional development
work is ongoing to improve the robustness and accessibility of the system. The system
described herein will also work with Repast J. However, the system requires writing
some additional Java code that is specific to the Repast J model. It is our hope in the
future to make the current system work with Repast J more seamlessly. We hope the
release of the software and methodology will be seen as an invitation to collaborate to
improve the system as a whole and enhance its utility to the vibrant modeling
communities of NetLogo and Repast J.

Keywords: NetLogo, Repast, cluster computing

INTRODUCTION

Many agent-based models have some inherent randomness associated with them. This
means there will likely be a distribution associated with output from the models. One must be
cognizant of where on the distribution of possible outcomes a particular model run may lie. This
is difficult to know a priori, however. Therefore, it can be particularly useful to run agent-based
models many times, varying not only model parameter values but also random seeds. Done
manually, however, this task is tedious in the extreme. This paper will discuss a methodology to
run NetLogo many times in an automated fashion in a cluster computing environment that is
more flexible than, although not as user friendly as, NetLogo’s internal BehaviorSpaces.

The work described in this paper is the outgrowth of work started as a part of Project
Albert known as data farming and operational synthesis; see Brandstein (1998) and Horne (2001)
for a more complete discussion. One of the many foci of Project Albert was the creation of a data

* Corresponding author address: Matthew Koehler, The MITRE Corporation, 7515 Colshire Dr., Mail Stop H305,

McLean, VA 22102; e-mail: mkoehler@mitre.org.

2

farming environment (DFE); this is a cluster computing environment designed to run simple,
stochastic models many times (tens of thousands to millions) as a way to explore the dynamics of
the model and understand the possible outcomes, especially potential outlier events; see Barry
(2004a,b) for a discussion of the importance and utility of understanding outlier events. This was
done with an eye toward decision support, so the system was made as easy to use as possible in
the hope that it would be utilized by decision makers and subject matter experts. The models that
are currently part of the DFE include ISAAC, MANA, Pythagoras, Socrates, PAX, and NetLogo.
ISAAC, MANA, Pythagoras, and Socrates are all agent-based combat models. PAX is an agent-
based peace-support, peace-keeping model. NetLogo is a general-purpose agent-based modeling
environment (Wilensky 1999). The incorporation of NetLogo represents a major step forward for
the generalization of the DFE, making it useful not only to military analysts but also to the
greater academic and analytic communities.

The DFE is based on XML input and study definition files. This presented some
challenges with respect to NetLogo, since it does not use XML for its input files. We overcame
this by creating a few standards for the NetLogo program and a parser that breaks the NetLogo
program into a series of XML blocks on the basis of each part’s functionality. This paper briefly
describes the major steps necessary to “data farm” a NetLogo model.

GENERAL FLOW OF THE DFE WITH NETLOGO

The general flow of the system is as follows: (1) create a NetLogo model following a set
of conventions; (2) parse the NetLogo file into an input XML file; (3) by using the XStudy tool,
pick the sliders, choosers, or switches that will be varied during the runs; (4) use OMD and
Condor to kick off the runs and collect the data (this can de done on a single machine or multiple
machines). All of the software is written in Java and should work on any machine with a Java
Virtual Machine. This system, although it is not perfected, is robust enough to handle the
pressure of workshop demands, including thousands of runs done remotely on clusters in
different countries. We have successfully run Netlogo in two different cluster computing
environments: the Maui High Performance Computing Center and the Singapore Defense
Science Organization. The system is capable of handling any sort of experimental design, from
full factorial to nearly orthogonal Latin hypercube (NOLH). Furthermore, OMD has
post-processing capabilities that can be used with evolutionary programming algorithms and
other types of user-defined algorithms to create a more dynamic study.

In the following discussion, we examine the conventions needed to put together a
NetLogo program, and we provide general instructions for using the other software used for the
multiple runs; however, we assume the reader is familiar with Condor. The software discussed in
this paper is, or soon will be, available on SourceForge. Alternatively, the software is available
from the authors. Condor is available from its developers at http://www.cs.wisc.edu/condor/.
NetLogo is available from its developers at http://ccl.northwestern.edu/netlogo/.

3

SETTING UP THE NETLOGO MODEL

The current system requires certain features within the NetLogo model. These
requirements, which are discussed below, have minimal impact on the structure of the program
or the speed of execution and are designed to allow an external Java program to start the model,
set parameter values (sliders, choosers, and switches), start and end a run, and collect output data
(both end-of-run and time-series data). In general, the wrapper starts NetLogo and loads the
model, and then it tells NetLogo to iterate a certain number of times. At the end of the requisite
number of iterations, output data are collected, and the NetLogo run is terminated.

Global Variables

The model needs three global variables: stopped, filename, and clock. These are
used by the external program to run NetLogo, keep track of output data, and allow the modelers
to control the behavior of their model separately from the Java wrapper.

Setup

First, the NetLogo model must have a procedure called setup to instantiate the model
and to prepare the output files. At a minimum, it needs the following lines of code:

to setup
set clock 0
set stopped false
setup-file
end

Every time the model is run, it will be in a newly started instantiation of NetLogo;
therefore, you are not required to set variables (unless they need to be something other than
zero). However, you may want to clear values and set others so that you will know exactly how
the model is starting up. If you do clear values, DO NOT use the command clear-all or ca.
If you want to clear values, use commands such as clear-turtles, clear-patches,
clear-all-plots, or clear-output; then manually set the variables. If you use
clear-all, you will set the variable filename to 0. This will cause problems later on, when
the output from all the runs is collected, because all the files will have the same name. The batch
version of NetLogo is run by a Java program that will set certain parameters; among them is
filename. Once NetLogo is started, the Java program will call the setup procedure. If
setup then resets the value of filename, Condor and OMD will have trouble keeping track
of the output files because all the files will have the same name. A more comprehensive version
of the setup procedure that includes resetting of values is shown below:

to setup
ct
cp
clear-output
clear-all-plots
;; manually set all variables

4

set clock 0
set stopped false
setup-file
end

The setup-file procedure is very short and could be called from within the setup
procedure. It is recommended to keep them separate for clarity. A sample of this procedure is
shown below:

to setup-file
 ifelse filename = 0
 [file-open “Your_BackUp_Name_Here.csv”]
 [file-open filename]
end

This procedure allows you to run the NetLogo program inside the cluster computing
environment or in the standard NetLogo program for testing purposes. This works because it
checks to see if the variable filename has been set by the Java wrapper program. If it has not
been set by the Java wrapper, it will open a default file of your choosing.

Go

All models must also have a go procedure. The go procedure is a little different than the
usual NetLogo program. First of all, the procedure must be called “go.” Second, the wrapper
runs the NetLogo program by asking it to step a certain number of times. Because of this
structure, it is important to “protect” your runtime code by nesting it inside an if statement that
returns true if stopped is false. Sample code for the go procedure is given below:

to go
set clock clock + 1
if not stopped
 [
 ;;runtime code goes in here

 if ‘stop condition is true’
[do-file-print close-files set stopped true]
]
end

By nesting the runtime code inside the if statement, the wrapper can run the model any
number of times without any potential damage to the output after the stop condition is met. For
example, if you have set up the wrapper to run your model 6,000 times, but you have a stop
condition that is triggered at time-step 3,500, the wrapper will continue to tell your model to step
another 2,500 times. If you generate output at every time step and do not protect it, then you will
end up with another 2,500 lines of output. Since your stop condition could be triggered at
different times, it could be very difficult to fix your data after the run. It is also important to
segregate any end-of-run printing procedures from the file close procedure. Once the wrapper is
done stepping the NetLogo program, it will tell the program to close-files. Therefore, you

5

must have a procedure in your program that is called close-files. If this procedure includes
anything other than file closing code, it may cause a problem, since it will be run any time files
are closed. If you close files at any time that the stop condition for your model is true, then any
other code will be run every time the wrapper steps your program once the stop condition is met.
(This is not an issue if you protect your runtime procedures in the aforementioned if statement
and make the close-files procedure exclusively devoted to closing files.) However, this
does require that your model have a stop condition that will be triggered at least one time-step
before the wrapper ends the run, because the wrapper will simply stop telling the program to step
and then call the close-files procedure. Sample code for the do-file-print and
close-files procedures are provided below:

to do-file-print
file-print “output goes here”
end

to close-files
file-close-all
end

Also, there is no post-processing currently associated with NetLogo runs, so if you want
something in the output file, such as input parameters, you must write it there in the program
(in something like the do-file-print procedure). This file will be a single line if you are
only collecting end-of-run data. If, however, you are collecting time-series data, this file may be
very large.

The above represents all the requisite code for a NetLogo program to set it up for cluster
computing. Now, part of the utility of cluster computing is being able to run a model many times
with different parameter values. The system we have developed can run NetLogo programs
many times and change parameter values. However, the parameters that will change need to
comport with a set of standards. First, they must be sliders, choosers, switches, etc., so they must
therefore appear in the “Interface” tab of the NetLogo environment. Second, the parameters must
not contain any special characters, like ?, %, $, or *. Third, they may be set to numeric values
only — no strings. For example, a chooser with the values high, medium, and low would not be
acceptable. The chooser should have values such as 1, 2, and 3, which could then be mapped to
high, medium, and low in the procedural part of the NetLogo model. This does not preclude
other parameters from taking on any values you wish or from having special characters in their
name; these standards apply only to parameter values you wish to change in an automated
fashion.

NETLOGO TO XML PARSER

Once the NetLogo model is completed, it is time to prepare the system for multiple runs.
To do this, first create a new folder to use for file preparation and to collect the output created by
the multiple runs. Place the NetLogo model in this folder, and make sure that it writes output to
this folder. (NetLogo defaults to the user folder, which can cause problems later on, when OMD
tries to collect output that is not in the right folder.) Next use NetLogo2XML to parse the
NetLogo file into an XML format usable by XStudy. The process basically pulls the variables
that are declared as sliders, choosers, and switches and places them within XML tags that

6

XStudy will recognize as variables that can be manipulated from one run to the next. To
accomplish this conversion, place the NetLogo2XML.jar and the dom4j-1.5.jar into your
working folder, then launch the parser from a command prompt within your working directory
with the following commands:

java -cp NetLogo2XML.jar;dom4j-1.5.jar

albert.datafarm.netlogo.GenerateXMLScenario

Your-NetLogo-Model-Name.nlogo

with spaces in between the separate lines above. The parser then outputs an appropriate XML file
based on your model name (e.g., Your-NetLogo-Model-Name.xml) into the same working
directory. This file can then be used by XStudy to define your experimental design.

THE XSTUDY TOOL

Once the NetLogo XML file has been created, start XStudy by double clicking the
xpath.bat file. Once XStudy is running, open the NetLogo XML file. Per Figure 1, in the box
on the left, you will see all of the variables associated with the sliders, choosers, and switches of
your model. Next, create a parameter group by clicking the “Add Param” button and typing in a
name. You must have at least one group, but you do not need more than one group. To add a
variable to the group, click the variable in the box on the left, then click the “Add Current
Selection” button. Do this for all variables you wish to change during the run. Every variable that
will take on different values during the runs will need to be in a different group. For example, if
you have sliders associated with sight for three types of agent and you wish to vary them in the
same way across all three groups, then place them in a single group — perhaps called vision. If
there is another slider in your model for the number of obstacles within the environment and you
wish to change it in a way that is dissimilar to the values for agent sight, then it will need to go in
a different group — perhaps one called obstacles.

Per Figure 2, once you have created all of the necessary parameter groups, the Gridded
tab can be used to create a simple, full factorial or gridded experimental design. In this tab, you
will see a list of all the parameter groups you created. Simply enter in a minimum, maximum,
and a delta for all the groups to create your study. This is very similar to the BehaviorSpace
experimental setup found within NetLogo and the structure of the multi-keyword value
definitions in Repast parameter files.

If you click the DOE radio button at the bottom of the Select Parameters tab
(see Figure 1), the CSV_DOE tab becomes active. Figure 3 is a screen shot of that tab. This
option allows you to create any study design you wish. It simply requires a CSV file of the
values you wish to run for each parameter. The structure is simply this: columns are parameter
groups created in the Select Parameters tab (order here is important, the left to right order of the
columns in the CSV must be the same as the top to bottom order of the parameter groups), and
each row is a run. To load the CSV file you created, browse to its location, tell XStudy how
many lines to skip (if you have any header information in the file, tell XStudy which line has the
labels in it), and then click Parse. Once that has been accomplished, click the cell in the Column

7

FIGURE 1 Select Parameters tab

FIGURE 2 Gridded tab

8

FIGURE 3 CSV_DOE tab

Number column adjacent to a parameter group and choose the appropriate column for the values
from the drop-down menu.

It is in the CSV_DOE tab that you would create a more sophisticated study design, such
as NOLH. Software to generate a NOLH study design in an Excel spreadsheet, as well as a
wealth of other information, is available from the Naval Postgraduate School’s Simulations of
Experiments and Efficient Designs (SEED) Lab at http://diana.or.nps.navy.mil/~susan/SeedLab/
index.html, under “Software Downloads.” As the parameter space you wish to search gets larger,
these study designs become more and more important. A simple, gridded design will quickly
outpace available computing resources, even for fairly small numbers of parameters. NOLH
represents an alternative to gridded designs that still affords a statistically valid sample of the
parameter space. More information about NOLH designs to explore high-dimensional
simulations can be found at Lucas (2002) and at the SEED Lab Web site, under “Papers.”

Once the study has been defined in either the Gridded tab or CSV_DOE tab, there are
only a few last items to specify before one can begin the runs. These last items are specified in
the Study Info tab. An example of this tab can be found in Figure 4. Here you may enter
information about who is performing the study, as well as a narrative about the study. All of this
information is optional. What are important on this tab are Model Info and Model Run Info. In
these areas, you specify the model that OMD should use to run the program and the number of
replicates to run for each parameter combination. The number of replicates to run is usually
driven by how many processors you have on which to run the program, how long it takes to run
your model, and what level of statistical significance you wish to achieve. In the past, we have
used anything from 10 replicates for very cursory, fast analyses to 25,000 replicates when we are
particularly concerned with very low base-rate phenomena.

9

FIGURE 4 Study Info tab

The last step is to move to the Summary tab (Figure 5). Here you are presented with a

summary of the information that you have entered thus far. At the bottom of the tab are two
buttons. One button (Make Maui Study) is used to create a study.XML file for the Maui High
Performance Computing Center; the other (Make OldMcData Study) is used to create a
study.XML file for OMD. The only button that is of use in this case is the Make OldMcData
Study button. This button will produce the necessary OMD XML file to run the experiment and
place it in the same directory as the NetLogo XML file.

USING OLD MCDATA

Once you have created the OMD study.XML file, make sure everything is in the same
directory as your NetLogo program. This includes, at a minimum, the .nlogo file and the
study.XML file. If you imported a CSV file for the study design, that file must also be in the
directory with the .nlogo and study.XML files.

Although this paper does not discuss the installation of OMD, the applications needed for
OMD to function properly can be found in Table 1. Installation documentation for OMD can be
found with the software, which is available from the authors and should soon be available on
SourceForge.

10

FIGURE 5 Summary tab

TABLE 1 Java applications required to run OldMcData

Application

Purpose

Jar files

Jade 2.5 Agent-based development environment Base64.jar, iiop.jar,

jadeTools.jar, jade.jar

Colt Scientific code – use random number generators colt1.0.2.jar

PES Redirecting output PES.jar

Xalan XSLT processor for transforming XML – used by dom4j xalan.jar

Xerces XML parsing Xerces.jar

Jakarta-oro-2.0.7 Regular expression pattern matching and processing jakarta-oro-2.0.7.jar

NALEX Natural algorithms, such as simulated annealing, genetic

algorithms, and evolutionary programming
nalex1.0-
20031119b306.jar

dom4j XML parsing dom4j-full.jar

11

Once OMD is installed on your computer, you will have the directory oldmcdata in
your root directory. Place the NetLogo folder you created previously in the test directory
found within the oldmcdata directory. In the following example, the NetLogo directory is
called NetLogoTest. Once you have accomplished this, you should have the following
directory tree: c:/oldmcdata/test/NetLogoTest. To run the experiment, open a
command prompt window, navigate to the oldmcdata directory, and type in the following
line:

oldmcdata.start c:/oldmcdata/test/NetLogoTest study.xml

The above is mostly for convenience and bookkeeping. You may put your NetLogo study
directory anywhere you wish, thus making the command line statement:

oldmcdata.start <path to your study directory> <your study
filename>

Unless you have manually changed the name of your study file that XStudy created, that last
argument in the statement will remain study.xml.

Upon completion of the run, there will be three new folders in the NetLogoTest
folder: Excursions, Output, and Playback. The Excursions folder contains the XML
files used as input for each NetLogo run. The Output folder contains the output data that
NetLogo created. The Playback folder should be empty and is created to hold output produced
by some of the Project Albert models. At this point, you can use whatever tool you choose for
analyzing the output data.

CONCLUSION

 Project Albert has created a number of tools for running simple models for a large
numbers of times in a cluster computing environment. Initially, these tools were specifically for
Project Albert agent-based combat models. Recently, however, we have spent time trying to
generalize this capability for use by the greater analytic and academic community. This is still
very much a work in progress, and we would welcome collaboration with others as we continue
to develop this capability and make it more accessible. This paper necessarily glossed over some
details with regard to the process described; we encourage interested readers to contact the
authors for more information and the latest versions of the software discussed herein. By
November 15, 2005, all of the software discussed in this paper should be available on
SourceForge. The Web site is http://sourceforge.net/projects/datafarm. The software is currently
in an alpha form but will continue to be updated on the SourceForge site.

Although space limitations do not permit its detailed description, the reader should note
that a similar XML framework has been developed for Repast J utilizing a custom controller that
passes in a random seed and an XML input file. However, this system currently requires more
customized code than the NetLogo version. As with the NetLogo case, the authors also wish to
share this framework with interested members of the Repast community and will gladly share
software and lessons learned with any interested party.

12

REFERENCES

Barry, P., and M. Koehler, 2004a, “Simulation in Context: Using Data Farming for Decision

Support,” in Proceedings of the 2004 Winter Simulation Conference, eds. R. Ingalls,
M. Rossetti, J. Smith, and B. Peters, Institute of Electrical and Electronics Engineers,
Piscataway, NJ; available at http://www.informs-sim.org/wsc04papers/101.pdf.

Barry, P., M. Koehler, and A. Forsyth, 2004b, “The Bigger Hammer Approach: Using Massively

Parallel Computation to Address Low Base Rate Problems,” in Proceedings of the 2004
North American Computational Social and Organizational Science Conference; available
at http://www.casos.cs.cmu.edu/events/conferences/2004/2004_proceedings/Barry_Philip.
pdf.

Brandstein, A., and G. Horne, 1998, “Data Farming: A Meta-Technique for Research in the

21st Century,” in Maneuver Warfare Science 1998, eds. F. Hoffman and G. Horne, USMC
Combat Development Command, Quantico, VA.

Horne, G., 2001, “Beyond Point Estimates: Operational Synthesis and Data Farming,” in

Maneuver Warfare Science 2001, eds. G. Horne and M. Leonardi, USMC Combat
Development Command, Quantico, VA.

Lucas, T., S. Sanchez, Maj. L. Brown, and Maj. W. Vinyard, 2002, “Better Designs for High

Dimensional Explorations of Distillations,” in Maneuver Warfare Science 2002, eds.
G. Horne and S. Johnson, USMC Project Albert, Quantico, VA.

Wilensky, U., 1999, NetLogo. Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL; available at: http://ccl.northwestern.edu/netlogo/.

	CLUSTERED COMPUTING WITH NETLOGO AND REPAST J:
	BEYOND CHEWING GUM AND DUCT TAPE
	ABSTRACT
	INTRODUCTION
	GENERAL FLOW OF THE DFE WITH NETLOGO
	 SETTING UP THE NETLOGO MODEL
	Global Variables
	Setup
	Go

	NETLOGO TO XML PARSER
	THE XSTUDY TOOL
	USING OLD MCDATA
	CONCLUSION
	 REFERENCES

